Skip to main content
Log in

Expression, purification, and subcellular localization of phospholipase C in Dunaliella salina

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Plants possess effective mechanisms to respond quickly to the external environment. Rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs after a stimulus. The PLC in Dunaliella salina plays important roles in growth and stress responses. However, the molecular basis of PLC action in D. salina remains little understood. To gain insight into the potential biological functions of this enzyme, we cloned a phospholipase C gene from D. salina in a previous study, named DsPLC (GenBank No. KF573428). Here, we present the prokaryotic expression, purification, and characterization of the DsPLC gene. The entire coding region of DsPLC was inserted into an expression vector pET32a, and the DsPLC gene was successfully expressed in Escherichia coli. The DsPLC protein was purified and identified using a polyclonal antibody and western blotting. Expressing DsPLC fused with a green fluorescent protein (GFP) in onion showed that DsPLC-GFP was localized to the intracellular membrane. Quantitative real-time PCR analysis revealed that the relative expression of the DsPLC gene was induced significantly by 3.0-mol/L NaCl at 4 h. Our results support the importance of PLC enzymes in plant defense signaling. This study provides a basis for further functional studies of the DsPLC gene and for additional analysis of the potential roles of PLC enzymes in response to abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd–El–Haliem A M, Vossen J H, van Zeijl A, Dezhsetan S, Testerink C, Seidl M F, Beck M, Strutt J, Robatzek S, Joosten M H A J. 2016. Biochemical characterization of the tomato phosphatidylinositol–specific phospholipase C (PI–PLC) family and its role in plant immunity. Biochimica et Biophysica Acta (BBA)–Molecular and Cell Biology of Lipids, 1861 (9): 1 365–1 378, https://doi.org/10.1016/j. bbalip.2016.01.017.

    Article  Google Scholar 

  • Arroussi HE, Benhima R, Elbaouchi A, Sijilmassi B, Mernissi NE, Aafsar A, Meftah–Kadmiri I, Bendaou N, Smouni A. 2018. Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). Journal of Applied Phycology, 30 (5): 2929–2941. https://doi.org/10.1007/s10811–017–1382–1.

    Article  Google Scholar 

  • Arz M C, Grambow H J. 1994. Polyphosphoinositide phospholipase C and evidence for inositol–phosphatehydrolysing activities in the plasma–membrane fraction from light–grown wheat (Triticum aestivum L.) leaves. Planta, 195 (1): 57–62, https://doi.org/10.1007/BF00206292.

    Article  Google Scholar 

  • Belhaj D, Athmouni K, Frikha D, Kallel M, El Feki A, Maalej S, Zhou J L, Ayadi H. 2017. Biochemical and physiological responses of halophilic nanophytoplankton (Dunaliella salina) from exposure to xeno–estrogen 17α–ethinylestradiol. Environmental Science and Pollution Research, 24 (8): 7 392–7 402, https://doi.org/10. 1007/s11356–017–8415–9.

    Article  Google Scholar 

  • Cerminati S, Eberhardt F, Elena C E, Peirú S, Castelli M E, Menzella H G. 2017. Development of a highly efficient oil degumming process using a novel phosphatidylinositolspecific phospholipase C enzyme. Applied Microbiology and Biotechnology, 101 (11): 4 471–4 479, https://doi. org/10.1007/s00253–017–8201–0.

    Article  Google Scholar 

  • Chen H, Lao Y M, Jiang J G. 2011. Effects of salinities on the gene expression of a (NAD +)–dependent glycerol–3–phosphate dehydrogenase in Dunaliella salina. Science of the Total Environment, 409 (7): 1 291–1 297, https://doi. org/10.1016/j.scitotenv.2010.12.038.

    Article  Google Scholar 

  • Allah E F, Hu X Y, Jia A Q. 2016. The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii. Planta, 244 (3): 651–669, https://doi.org/10.1007/s00425–016–2528–0.

    Article  Google Scholar 

  • Cui L Q, Chai Y R, Li J, Liu H T, Zhang L, Xue L X. 2010. Identification of a glucose–6–phosphate isomerase involved in adaptation to salt stress of Dunaliella salina. Journal of Applied Phycology, 22 (5): 563–568, https://doi.org/10.1007/s10811–009–9494–x.

    Article  Google Scholar 

  • Einspahr K J, Peeler T C, Thompson G A. 1989. Phosphatidylinositol 4, 5–bisphosphate phospholipase C and phosphomonoesterase in Dunaliella salina membranes. Plant Physiology, 90 (3): 1 115–1 120, https://doi.org/10.1104/pp.90.3.1115.

    Article  Google Scholar 

  • Fang L, Qi S Y, Xu Z Y, Wang W, He J, Chen X, Liu J H. 2017. De novo transcriptomic profiling of Dunaliella salina reveals concordant flows of glycerol metabolic pathways upon reciprocal salinity changes. Algal Research, 23: 135–149, https://doi.org/10.1016/j.algal.2017.01.017.

    Article  Google Scholar 

  • Gong W F, Zhao L N, Hu B, Chen X W, Zhang F, Zhu Z M, Chen D F. 2014. Identifying novel salt–tolerant genes from Dunaliella salina using a Haematococcus pluvialis expression system. Plant Cell, Tissue and Organ Culture, 117 (1): 113–124, https://doi.org/10.1007/s11240–014–0425–4.

    Article  Google Scholar 

  • Ha K S, Thompson G A. 1991. Diacylglycerol metabolism in the green alga Dunaliella salina under osmotic stress: possible role of diacylglycerols in phospholipase C–mediated signal transduction. Plant Physiology, 97 (3): 921–927, https://doi.org/10.1104/pp.97.3.921.

    Article  Google Scholar 

  • Han D M, Chai X J, Wang Y Y, Liu S C, Yue W J. 2014. Cloning and expression analysis of DsPLC under salt stress from Dunaliella salina. Journal of Nuclear Agricultural Sciences, 28 (10): 1 773–1 780, https://doi. org/10.11869/j.issn.100–8551.2014.10.1773. (in Chinese with English abstract)

    Google Scholar 

  • He Q H, Qiao D R, Bai L H, Zhang Q L, Yang W G, Li Q, Cao Y. 2007. Cloning and characterization of a plastidic glycerol 3–phosphate dehydrogenase cDNA from Dunaliella salina. Journal of Plant Physiology, 164 (2): 214–220, https://doi.org/10.1016/j.jplph.2006.04.004.

    Article  Google Scholar 

  • Hirayama T, Ohto C, Mizoguchi T, Shinozaki K. 1995. A gene encoding a phosphatidylinositol–specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 92 (9): 3 903–3 907, https://doi.org/10.1073/pnas.92.9.3903.

    Article  Google Scholar 

  • Hong Y Y, Zhao J, Guo L, Kim S C, Deng X J, Wang G L, Zhang G Y, Li M Y, Wang X M. 2016. Plant phospholipases D and C and their diverse functions in stress responses. Progress in Lipid Research, 62: 55–74, https://doi. org/10.1016/j.plipres.2016.01.002.

    Article  Google Scholar 

  • Jia Y L, Xue L X, Liu H T, Li J. 2009. Characterization of the glyceraldehyde–3–phosphate dehydrogenase (GAPDH) gene from the halotolerant alga Dunaliella salina and inhibition of its expression by RNAi. Current Microbiology, 58 (5): 426–431, https://doi.org/10.1007/s00284–008–9333–3.

    Article  Google Scholar 

  • Kanehara K, Yu C Y, Cho Y, Cheong W F, Torta F, Shui G H, Wenk M R, Nakamura Y. 2015. Arabidopsis AtPLC2 Is a primary phosphoinositide–specific phospholipase C in phosphoinositide metabolism and the endoplasmic reticulum stress response. PLoS Genetics, 11 (9): e1005511, https://doi.org/10.1371/journal.pgen.1005511.

    Article  Google Scholar 

  • Katz A, Avron M. 1985. Determination of intracellular osmotic volume and sodium concentration in dunaliella. Plant Physiology, 78 (4): 817–820, https://doi.org/10.1104/pp. 78.4.817.

    Article  Google Scholar 

  • Katz A, Waridel P, Shevchenko A, Pick U. 2007. Salt–induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano–LC–MS/MS analysis. Molecular & Cellular Proteomics, 6 (9): 1 459–1 472, https://doi.org/10.1074/mcp.M700002–MCP200.

    Article  Google Scholar 

  • Kim Y J, Kim J E, Lee J H, Lee M H, Jung H W, Bahk Y Y, Hwang B K, Hwang I, Kim W T. 2004. The Vr–PLC3 gene encodes a putative plasma membrane–localized phosphoinositide–specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.). FEBS Letters, 556 (1–3): 127–136, https://doi.org/10.1016/S0014–5793(03)01388–7.

    Article  Google Scholar 

  • Kocourková D, Krčková Z, Pejchar P, Veselková Š, Valentová O, Wimalasekera R, Scherer G F E, Martinec J. 2011. The phosphatidylcholine–hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. Journal of Experimental Botany, 62 (11): 3 753–3 763, https://doi.org/10.1093/jxb/err039.

    Article  Google Scholar 

  • Lei G P, Qiao D R, Bai L H, Xu H, Cao Y. 2008. Isolation and characterization of a mitogen–activated protein kinase gene in the halotolerant alga Dunaliella salina. Journal of Applied Phycology, 20 (1): 13–17, https://doi.org/10.1007/s10811–007–9175–6.

    Article  Google Scholar 

  • Li L, Wang F W, Yan P W, Jing W, Zhang C X, Kudla J, Zhang W H. 2017. A phosphoinositide–specific phospholipase C pathway elicits stress–induced Ca 2+ signals and confers salt tolerance to rice. New Phytologist, 214 (3): 1 172–1 187, https://doi.org/10.1111/nph.14426.

    Article  Google Scholar 

  • Liska A J, Shevchenko A, Pick U, Katz A. 2004. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homologybased proteomics. Plant Physiology, 136 (1): 2 806–2 817, https://doi.org/10.1104/pp.104.039438.

    Article  Google Scholar 

  • Liu J L, Zhang D X, Hong L. 2015. Isolation, characterization and functional annotation of the salt tolerance genes through screening the high–quality cDNA library of the halophytic green alga Dunaliella salina (Chlorophyta). Annals of Microbiology, 65 (3): 1 293–1 302, https://doi. org/10.1007/s13213–014–0967–z.

    Article  Google Scholar 

  • Lv H X, Cui X G, Tan Z L, Jia S R. 2017. Analysis of metabolic responses of Dunaliella salina to phosphorus deprivation. Journal of Applied Phycology, 29 (3): 1 251–1 260, https://doi.org/10.1007/s10811–017–1059–9.

    Article  Google Scholar 

  • Oren A. 2005. A hundred years of Dunaliella research: 1905–2005. Saline Systems, 1: 2, https://doi.org/10.1186/1746–1448–1–2.

    Google Scholar 

  • Peters C, Kim S C, Devaiah S, Li M Y, Wang X M. 2014. Nonspecific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant, Cell & Environment, 37 (9): 2 002–2 013, https://doi.org/10.1111/pce.12334.

    Article  Google Scholar 

  • Punta M, Coggill P C, Eberhardt R Y, Mistry J, Tate J, Boursnell C, Pang N Z, Forslund K, Ceric G, Clements J, Clements A, Clements L, Clements E L L, Clements S R, Clements A, Clements R D. 2012. The Pfam protein families database. Nucleic Acids Research, 40 (D1): D290–D301, https://doi.org/10.1093/nar/gkr1065.

    Book  Google Scholar 

  • Ramos A A, Polle J, Tran D, Cushman J C, Jin E S, Varela J C. 2011. The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: genetic advances and future perspectives. Algae, 26 (1): 3–20, https://doi. org/10.4490/algae.2011.26.1.003.

    Article  Google Scholar 

  • Shi J R, Gonzales R A, Bhattacharyya M K. 1995. Characterization of a plasma membrane–associated phosphoinositide–specific phospholipase C from soybean. The Plant Journal, 8 (3): 381–390, https://doi.org/10.1046/j.1365–313X.1995.08030381.x.

    Article  Google Scholar 

  • Singh A, Bhatnagar N, Pandey A, Pandey G K. 2015. Plant phospholipase C family: regulation and functional role in lipid signaling. Cell Calcium, 58 (2): 139–146, https://doi. org/10.1016/j.ceca.2015.04.003.

    Article  Google Scholar 

  • Tammam AA, Fakhry EM, El–Sheekh M. 2011. Effect of salt stress on antioxidant system and the metabolism of the reactive oxygen species in Dunaliella salina and Dunaliella tertiolecta. African Journal of Biotechnology. 10(19): 3 795–3 808. http://www.ajol.info/index.php/ajb/article/view/93533.

    Google Scholar 

  • Tripathy M K, Tyagi W, Goswami M, Kaul T, Singla–Pareek S L, Deswal R, Reddy M K, Sopory S K. 2012. Characterization and functional validation of tobacco PLC delta for abiotic stress tolerance. Plant Molecular Biology Reporter, 30 (2): 488–497, https://doi.org/10.1007/s11105–011–0360–z.

    Article  Google Scholar 

  • Xie H, Xu P R, Jia Y L, Li J, Lu Y M, Xue L X. 2007. Cloning and heterologous expression of nitrate reductase genes from Dunaliella salina. Journal of Applied Phycology, 19 (5): 497–504, https://doi.org/10.1007/s10811–007–9162–y.

    Article  Google Scholar 

  • Xu X J, Cao Z X, Liu G Q, Bhattacharrya M K, Ren D T. 2004. Cloning and expression of AtPLC6, a gene encoding a phosphatidylinositol–specific phospholipase C in Arabidopsis thaliana. Chinese Science Bulletin, 49 (6): 567–573, https://doi.org/10.1360/03wc0514.

    Article  Google Scholar 

  • Zhai S M, Sui Z H, Yang A F, Zhang J R. 2005. Characterization of a novel phosphoinositide–specific phospholipase C from Zea mays and its expression in Escherichia coli. Biotechnology Letters, 27 (11): 799–804, https://doi. org/10.1007/s10529–005–5802–y.

    Article  Google Scholar 

  • Zhang J W, Zhang Z B, Zhu D, Guan Y, Shi D Y, Chen Y J, Li R F, Wang H Z, Wei J H. 2015. Expression and initial characterization of a phosphoinositide–specific phospholipase c from Populus tomentosa. Journal of Plant Biochemistry and Biotechnology, 24 (3): 338–346, https://doi.org/10.1007/s13562–014–0279–1.

    Article  Google Scholar 

  • Zhang X W, Cao S N, Li Y X, Mou S L, Xu D, Fan X, Ye N H. 2012. expression of three putative early light–induced genes under different stress conditions in the green alga Ulva linza. Plant Molecular Biology Reporter, 30 (4): 940–948, https://doi.org/10.1007/s11105–011–0411–5.

    Google Scholar 

  • Zhao L N, Gong W F, Chen X W, Chen D F. 2013. Characterization of genes and enzymes in Dunaliella salina involved in glycerol metabolism in response to salt changes. Phycological Research, 61 (1): 37–45, https://doi.org/10.1111/j.1440–1835.2012.00669.x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojie Chai.

Additional information

Supported by the National Natural Science Foundation of China (No. 31472260) and the Key Laboratory of Hydrobiology in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, Y., Wang, Y., Yue, J. et al. Expression, purification, and subcellular localization of phospholipase C in Dunaliella salina. J. Ocean. Limnol. 37, 1363–1371 (2019). https://doi.org/10.1007/s00343-019-8183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8183-0

Key word

Navigation